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The atomic structure of interparticle contact interfaces which present a new type of interface, 
is reviewed. Such interfaces show long-range elastic stress fields and a marked tendency to 
reconstruct themselves into more equilibrium structures similar to conventional grain 
boundaries. The methods of reconstruction (ageing) of the interfaces are analysed in detail. 
The elastically stressed state in the volume of nanoparticles which have few contacts with 
neighbouring particles in the ensemble, is investigated. Plasticity and mass-transfer processes 
leading to the relaxation of these contact stresses are considered. The mechanisms of 
generation of dislocations and critical pressures of compaction are discussed in detail. Stress- 
stimulated diffusion initiated by contact pressures is compared with the traditional mass- 
transfer caused by surface tension during the sintering of conventional coarse-grained 
powders. 

1. In t roduc t ion  
Studies of the structure and properties of interfaces 
in polycrystals, thin epitaxial and island films have a 
rather long history (see, for example, [1-3]) and prin- 
cipal aspects of this matter have been reported in 
detail. 

From the fundamental viewpoint, the compaction 
of nanopowders in order to obtain "massive" nano- 
crystals is a very interesting phenomenon, owing to 
the unusual types of interfaces these ensembles may 
incorporate. These contact interfaces are substantially 
less stable than the traditional ones, and tend to decay 
due to long-range elastic fields generated by the con- 
tacts. This review discusses the simplest approaches to 
the description of the contact interface structure, elas- 
tic fields, channels of contact stress relaxation and 
other related phenomena taking place in the vicinity 
of a contact. 

2. F o r m a t i o n  o f  c o n t a c t  i n t e r f a c e s  
Nanoparticles are the objects of very high adhesive- 
ness [4-6]. Because of the strong adhesive forces, the 
nanoparticle-free surface tends to decrease via the 
formation of contacts (the interfacial energy is always 
less than the surface energy) of radius cz given by [7] 

= 114.5r~ (1 - v) ya/Gl] 1/3 (1) 

where Ya is the Dupr6 energy, Ya = 2? - y~ where 
and 3q are the surface and interface energies, respect- 
ively. In this estimate all the contiguous spherical 
particles are assumed to possess the same radius, l, 
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and elastic moduli, G, v. From Fig. 1 the radius, ~, of 
contact between originally spherical nanoparticles 
may be seen to reach relatively large values up to tens 
of per cent of the nanopartMe radius, l, under the 
action of surface tension. Certainly, the contact area 
enlarges with time on account of the surface diffusion 
which cannot be disregarded, even for rather low 
homologous temperatures, because diffusion paths in 
the dontacts between nano-objects are very short. On 
the basis of .this strong adhesion, the aggregates of 
nanoparticles may resist appreciable external loads. 
This is equivalent to the non-zero effective Young's ~ 
modulus, E e [8] 

Ee ,-~ O~b%G27a/l (1 + v)231/3 (2) 

where the numerical factor 0 is about 8.5, and qb is the 
green density. The green density in nanopowders is, as 
a rule, about 0.4~0.6. (Anomalously low green densit- 
ies of the order of 0.05 may be obtained under certain 
conditions of nanoparticle production [9].) The sub- 
stitution of typical values into this relationship gives a 
rather high effective modulus E e ~ 10-2 G. In reality 
the nanoparticle ensemble changes its density at smal- 
ler external loads due to interparticle sliding associ- 
ated, particularly, with plastic processes in contacts. 
(The effect of the nanopowder dead weight is, to some 
extent, equivalent to the external load [9].) 

Simple geometric considerations (see Fig. 1) show 
that a contact perceives external load, cr amplified 
by the factor of (1/~) 2. The critical shear stress causing 
irreversible changes in contacts between nanoparticles 
may be estimated, if one assumes that the interfacial 
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Figure 1 Capillary contact between nanoparticles. (a) Schematic 
model. (b) Contact radius, a, as a function of nanoparticle radius, l 
(in terms of lattice parameter, a) for elastic shear modulus 
G = 1011Jm -a, Poisson's ratio v = 0.3 and the Dupr6 energy, 
Ya = 610-1 J m-2  (gain in surface energy due to formation of 
contact). 

plastic processes become irreversible, when the radius 
of the bending of the leading glissile dislocation 
under the action of the local stress ~1oc ~ N o  (c) ( l / a )  2 

(where N is the number of dislocations in the 
contact-interface pile-up) becomes comparable with 
the radius, a, of the contact. So, stress cYlo c should be 

Gb/4o~ [10], where b is the Burgers vector of the 
interface dislocation (the absolute values of the 
Burgers vectors for interface dislocations are, as a rule, 
less than those for the lattice ones). Thus, one obtains 

01 G (b~4/3('~d "~1/3 
N \ l ]  \Gb] (3) 

where coefficient 0n ~ 0.25 [4.5n(I - v ) ]  I/3. This es- 
timate shows that for nanoparticles of radius l ,-~ 10ab 
(in which case the contact interface contains only a few 
dislocations, i.e. N ~ 1-10) the critical shear stress 
may be as large as ,-~ 10 -3 G. This rather high value 
indicates that the interparticle sliding in nanopowders 
(especially for the aged contacts, i.e. for the contacts 
with a relaxed structure) is difficult to initiate. If the 
lattices of contacting nanoparticles fit poorly, the 
mechanism of interparticle sliding is of a different 
nature [9, 11]. 

In addition, the stability of "capillary" (due to sur- 
face tension) contacts with respect to the rupture of 
contacting nanoparticles increases the capacity of 
nanoparticle ensembles to resist irreversible deforma- 
tion. The critical stress of the capillary contact rup- 
ture, ~'c, is, in fact, proportional to Td/l, which for the 
nanocrystallite size l ~ 10Xb yields the upper-margin 
value ~ 10-3 G. 

Equations 2 and 3 demonstrate the size-dependent 
resistance of free nanopowders to external forces. One 
should note that due to the well-known inclination of 
nanoparticles to form clusters containing thousands 
of particles (the average cluster size depends on the 
prehistory of a nanopowder specimen), the nanopow- 
ders may behave like traditional coarse powders. In 
the latter case the equations mentioned above do not 
hold. 
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Compaction of nanopowders requires the applica- 
tion of v.ery high pressures [12, 13]. Under such 
pressures the local contact stresses may be more im- 
portant than the adhesion effects. According to the 
Hertzian theory [14] the component of the stress 
tensor normal to the contact area obeys the following 
law 

3 
On = ~ (1/O~u)2p(1 -- rZ/a~) 1/2 (4) 

where P is the external pressure and r the radius in the 
polar coordinate system with the origin anchored at 
the contact centre. The expression for the Hertzian 
contact radius, an, takes the form [14] 

an = IO2(P/G) 1/3 (5) 

where the numerical factor 0 2 = [3 re (1 -v ) /8 ]  1/3. 
Using Equations 4 and 5 one may obtain the max- 
imum pressure over the contact. This maximum value 
is achieved at the contact centre 

Pmax = 03G(P/G)  1/a (6) 

where the numerical factor 0 3 = 1.5 [3r~(1 - v)/8] -z/3. 
For  very high external pressures (P ,-~ 10 -2 G) con- 

tact stresses could reach huge values (~  G), provided 
Equations 4-6,  derived in the framework of the linear 
elasticity theory, remain valid. However, as will be 
shown in Section 4, such high local stresses are not 
attainable in practice due to the defects generated in 
the contacts and spreading afterwards from the con- 
tact regions. 

Shape irregularities, impurity atoms, etc. give rise to 
friction between nanoparticles. The friction and sur- 
face tension account to a considerable degree for the 
gradients of residual stresses existing in poorly com- 
pacted powders at the macroscopic scale to prevent 
unloading the contacts in an as-compacted sample. 
However, an allowance for friction forces in the 
Hertzian problem of normal loadings (without tensile 
components) gives only non-essential corrections to 
the present results [15]. 

Summing up the discussion of this section one 
should note that in the absence of relaxation pro- 
cesses, high local stresses may exist in contact inter- 
faces either under external load or in the case of 
pronounced surface-tension effects (the latter situation 
usually corresponds to small sizes, l, of particles with 
clean surfaces, see Equation 1). As soon as relaxation 
phenomena become involved, the considered contact 
interfaces turn into traditional ones. 

3. S t r u c t u r e  of  c o n t a c t  in ter faces 
3.1. Structure of defects in unrelaxed 

contact  interfaces 
As a rule, nanoparticles are convex, except dendrites 
and polyparticles (e.g. "dumb-bells" or clusters) which 
are beyond the scope of the present consideration. 
They are usually predisposed towards faceting (see, for 
example, [16, 17]). Therefore, a particle with b c c  
structure may be represented by a cubic octahedron 
(Fig. 2). However, the surface ledges are still present 
even for near-spherical nanopartictes [17, 18]. 
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Figure 2 Schematic models of a nanoparticle with bcc lattice 
structure. (a) Vertex fine structure. (b) Edge fine structure. 

Each element of the nanoparticle surface is charac- 
terized by its own curvature, the facet curvature radius 
being Rf, and the rounding-off radii of edges and 
vertices, Re and Rv, respectively. For ensembles of 
near-spherical nanoparticles these radii are typically 
close to the particle radius, I. Simple geometric consid- 
erations show that the average number of ledges on 
the facet of a nanoparticle with b c c structure is of the 
order of (1/a') [ 1 -  cos0z/6)], where a' is the ledge 
height (of the order of the lattice parameter, a). For  
l ~ 102 nm, a' ~ 0.3 nm, the average number of ledges 
on the nanoparticle facet is of the order of 50. 

The average distance, D, between the ledges com- 
prises about several lattice parameters, a. However, it 
is not constant but continuously varies along the facet. 
Its maximum is situated near the centre of the facet, 
the value at maximum Do being approximately 1.4 
(al) 1/2. In this particular case, D = 3 nm. D decreases 
towards the periphery as O n ~ ( a l )  1/2 ((n + 1) 1/2 

- -  n l / 2 ) ,  where n is the ledge number, counted from 
the centre of the facet. 

Near the rounded vertices, the surface asperity 
looks like a set of faceted bulges (Fig. 2, inset a), while 
near the edges it may be represented by a family of 
approximately parallel ledges (Fig. 2, inset b). The 
superposition of these ledges in the Hertzian contact 
area depends on the contacting faces of nanoparticles 
(Fig. 3). 

Fig. 3a illustrates the most probable situation, when 
two facets are stuck together during the formation of 
the Hertzian contact. Other situations are less plaus- 

(c) 

Figure 3 Different types of Hertzian contacts: ( - - )  ledges on the 
surface of the opposing particle. (a) Overlap of facets; ~ is the angle 
between overlapping sets of ledges. (b) Vertex-facet contact. (c) 
Edge-facet contact. 

ible because of inevitable rotations of nanoparticles 
during compaction. However, if the configurations 
presented in Fig. 3b and c are stabilized, the ledges and 
vertices become potential sources of linear and point 
defects in the contact. 

When nanoparticles come into contact with each 
other, their surface defects become the contact area 
internal defects [19]. The surface ledges of particles in 
the contact area turn into interface dislocations 
(Fig. 4). The properties of these dislocations coincide 
with the properties of typical interface dislocations. 
The only peculiarity of such dislocations in the situ- 
ation being considered, is that they form unstable 
configurations that should either relax or disappear 
after unloading. 

The configurations shown in Fig. 3a may form a 
dislocation network with the typical segment length 

,-~ Dn/sin ~p, where q~ is the angle between the two 
sets of interacting ledges. 

A similar situation is shown in Fig. 4 which illus- 
trates the process of forming the edge interface dis- 
locations. Networks of screw interface dislocations 

4831 



tl 

Figure 4 Model of the formation of interface dislocation by ledges 
on contacting facets of nanoparticles. 

may, for example, be formed due to misorientations of 
crystal lattices of contacting nanoparticles. 

If the edge of a nanoparticle is set against the facet 
of another nanoparticle in one of the contacts, a wedge 
interface disclination may be created in the contact 
area (Fig. 5). The coordination number for nanopar- 
ticles in nanopowders with a high green density, qb, is 
of the order of 10, and the probability of this event 
becomes appreciable for each nanoparticle of the en- 
semble. If diffusion and plastic processes in the inter- 
face are suppressed, these interface disclinations may 
exist in compacts. 

Interface disclinations can produce long-range elas- 
tic stresses in nanoparticles [20] 

Go 
O'l~ 2~ (1 - v) log (Ol/~H) (7) 

where the disclination power, ~, depends on the value 
of angle 13 (Fig. 5) and the numerical factor, 0, may be 
estimated as ~ 10 -1. These interface disclinations 
may seriously modify the Hall-Petch law. 

3.2. Fine structure of relaxed contact 
interfaces 

Relaxation processes in contact interfaces result in 
the disappearance of long-range elastic fields and in 
the change of interface structure (Fig. 6). Owing to the 
surface diffusion, the radius of the diffusion (or adhe- 
sion [7], see Fig. 1) neck increases with time and may 
become comparable with the nanoparticle radius, if 
the temperature conditions allow diffusion processes 
to develop [21, 22] (Fig. 6a). 

Interface long-range elastic fields may relax due to 
faceting of the interface via the migration of some 
segments of the contact interface [23] (Fig. 6b). The 
contact interface migration may be accompanied by 
the rotation of contacting nanoparticles. It is worth 
mentioning that the interface previously distorted may 
be transformed due to the migration into a faceted 
interface consisting of segments with special orienta- 
tions (coinciding-site lattice (CSL)-boundaries; see, for 
example [24]). 

Generally speaking, the effective elastic moduli of 
contacting nanoparticles may differ. This is the case 
for the mixtures of nanopowders and for the nanopar- 
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Figure 5 Origination of a wedge interface disclination from a 
nanoparticle edge. 

L 
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Figure 6 Structure of relaxed contact interfaces. (a) Growth of 
diffusion neck as a result of initiation of surface diffusion. ( - - - )  The 
original position of the nanoparticle surface. (b) Faceting the inter- 
face as a result of local migration. (-  -) The initial position of the 
contact interface. (c) Nucleation of a new grain boundary at a 
convex contact interface. ( ) New boundary. (d) Equidistant 
interface dislocations. 

ticles with anisotropic elastic properties. So, the con- 
tact interface may bend into a particle having lower 
effective elastic moduli (Fig. 6c). Such an interface 
when relaxing is capable of nucleating a new one. It is 
interesting to note that convex interfaces have been 
recently detected in as-compacted nanocrystals 1-25]. 
It is thought that the nucleation of additional inter- 
faces (primary recrystallization) near the contacts con- 
taminated with impurity atoms is hindered. 

The non-equidistant positions of dislocations in 
pile-ups are well-known to generate highly intensive 
elastic fields near the pile-up head [10]. Therefore, the 
energy of the dislocation structure which inherits the 
geometry of facet ledges (see Fig: 3) may be decreased 
at the expense of a more regular arrangement of the 
interface dislocations [26, 27] (Fig. 6d). Such a struc- 
ture of dislocations possessing low energy shows local- 
ized stress fields. Tholen [26] has noted that in spite of 
the proximity to the surface, such relaxed interfaces 
look like typical polycrystal ones. 

4. Elastic stress f ields inside 
nanopar t ic les  in loaded 
n a n o p o w d e r s  

The plastic and diffusion processes in nanoparticles 
which develop in nanopowders when compacted are 



closely linked with the local elastic stresses generated 
during the formation of elastic contacts between the 
neighbouring nanoparticles. The details of the contact 
stress distribution should substantially influence both 
plastic and diffusion processes as well as the final 
characteristics of as-compacted nanocrystals. 

Contact problems have been studied for a long 
while (see [28]). However, the distributions of all the 
elastic field components in the whole volume of an 
elastic sphere having several Hertzian contacts with 
equivalent spheres, have not been evaluated until 
quite recently [29]. 

This problem is discussed in the present section 
(after Tanakov et al. [29]), where the three-dimen- 
sional finite element method has been adopted for the 
analysis which has been carried out, with the following 
typical assumptions. 

1. Nanoparticles are perfect homogeneous isotropic 
elastic spheres. 

2. All the nanoparticles in the ensemble are identical 
and contain only Hertzian contacts; in addition, nano- 
particles are supposed to be packed in regular struc- 
tures. 

3. Any imperfections are absent from the contacts 
and the temperature is low enough to initiate the 
sintering processes (the opposite case has been dis- 
cussed, e.g. [30]). 

4. Sizes, l, of nanoparticles are less than the critical 
length, l*, of dislocation stability [31] or else the stress 
relaxation processes make the applicability of the 
Hertzian approach doubtful [32]. 

It is interesting to study three typical cases of the 
loadings of nanoparticles in ensembles (Fig. 7). For 
symmetry reasons, the calculations have been re- 
stricted to only one quadrant of the sphere. 

In a nanoparticle compressed by neighbours the 
most informative quantities are hydrostatic and ten- 
sile components of elastic stress fields. Calculations 
have been performed for three contact radii: 
an = 0.05 l, 0.1 l and 0.15 I. In the two-contact model 
(Fig. 7a) they correspond to the following values of the 
external pressure Ptwo = 1.5 • 10 . 4  G, 1.2x 10 . 3  G, 
4.1 x 10 .3 G. For a nanoparticle having eight con- 
tacts, one obtains P~ight = 3.5 X 10 -4 G, 2.8 

x 10-3 G, 9.6 x 10-3 G, while for twelve contacts 
Ptweive = 4.2 x 10 -4 G, 3.4 x 10 . 3  G, 1.2 x 10 -z G, 
respectively (see Table I). The last model, when ap- 
plied to a tungsten nanopowder yields effective pres- 
sures Ptwelve = 0.06, 0.5, 1.9 GPa. These pressures are 
not very high, but they may induce substantially 
higher local stresses near the contacts. 

4.1. A two-contact model (Fig. 7a) 
For real nanopowders with high green densities, such 
a small number of neighbours is rather exotic. Never- 
theless, this model illustrates the basic features of 
elastic fields in a loaded nanoparticle and permits 
useful approximations to be obtained describing the 
properties of the stressed state in nanoparticles. 

The distributions of the hydrostatic stress and the 
intensity of tensile stresses are represented in Fig. 8. 
An accurate analysis of numerical data has revealed 
an increase in the inhomogeneity of the elastic fields 
with the external pressure rise. However, the slight 
dependence of the volume of the dilated region, which 
is, in this case, nearly 6%, on the external pressure, is 
surprising. 

The tensile stresses in the central part of the sphere 
grow with the external pressure increase. A careful 
examination of the numerical data has shown the 
presence of a slightly pronounced maximum of shear 
stresses right under the Hertzian contact at 
an = 0.15 l. This typical peak [28] has not been re- 
solved in other cases, because of an unavoidable aver- 
aging procedure smoothing the local non-monotonies. 

The numerical data for the hydrostatic stress, p(r, z), 
and the intensity of the shear stresses, r(r, z), inside 
a loaded nanoparticle in the case of two Hertzian 
contacts may be approximated by rather simple 
Equations 

0.5 
p(r, z) = 0.003 + (r/l) 1"6 + (z/l) 1"8P P < 0 (8) 

and 

2 
z(r, z) = 0.003 + (r/l) ~  + (z/l) 1"3 ] P I P  < 0 (9) 
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Figure 7 Schematic drawings of loading spherical nanoparticles by the closest neighbours in compressed nanopowders. (a) Two-contact 
loading. (b) Eight-contact loading corresponding to the b c c packing of nanoparticles in ensembles. Calculations have been carried out for the 
sphere element OABC, cut off from the sphere by symmetry planes. (c) Twelve-contact loading corresponding to the h c p  packing of 
nanoparticles in ensembles. Calculations have been carried out for the same sphere element OABC. 
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T A B L E  I Hydros t a t i c  stress a t  the centre of a loaded  nanopar t i c l e  

N u m b e r  of contacts ,  Z 

2 8 12 

oz/I Pm/G P/G Pm/G P/G Pm/G P/G 

0.05 7.6 • 10-  5 1.5 x 10 -4  3.2 x 10 . 4  3.5 x 10 -4  4.5 x 10 -4  4.2 • 10 -4  

0.1 6 .0x  10 4 1 .2x  10 . 3  2 . 5 x  10 . 3  2 . 8 x  10 . 3  3 .7x  10 -3 3 .4x  10 . 3  

0.15 2.0 x 10 -3 4.1 x 10 . 3  8 .6x  10 . 3  9.6 x 10 -3 1.3 x 10 - z  1 .2x  10 . 2  

The average  external  pressure,  P, has  been es t imated  as the superpos i t ion  of two-con tac t  loadings.  F r o m  Fig. 7 i t  follows tha t  

P = 4 cos54~ in the case of the e igh t -contac t  l oad ing  and  P = 4cos45~ for the twelve-contac t  case. 

A A 

-0.044~ 0.022~~ 
- 0 .  0 3 8 " / / / 1 ~ , / /  ~ o .  0 1 9 - ~ , / / 1  I \ ~ 
-o.  o3zg, / /L. , , /  \ o. o 1 6 - - k , - ' / I  \ 
-0 .  0 2 5 / / A  "~i 0. 013/.I_..,I / I \ 

o.oo -I_j ] \ 
-o.o13/ I \ \ , o . o o e T /  
-o.oo, , ~ o.oo _u I 

0 B 0 B 

(o1 (b) 

Figure 8 Stressed s ta te  in a spher ical  nanopar t i c l e  hav ing  two Her tz ian  contacts .  (a) Hydros t a t i c  stress. (b) In tens i ty  of shear  stresses. D a t a  are 

expressed  in terms of E (Young 's  modulus) .  

where z is the coordinate along the loading axis and 
r is the radial coordinate in a polar system with the 
origin coinciding with the contact centre. These equa- 
tions agree within 30% with the numerical data. 

4.2. An eight-contact model (Fig. 7b) 
The eight-contact loading corresponds to the b cc 
packing of nanoparticles which is widespread in real 
powders [33]. The numerical results for the physically 
most peculiar cross-sections OAB and OAD (see 
Fig. 7) of a loaded nanoparticle are presented in 
Fig. 9. This figure shows the hydrostatic stress and the 
intensity of shear stresses over these cross-sections. As 
one may expect, the dilated volume is smaller than in 
the case of a two-contact model and corresponds to 
2% of the total nanoparticle volume. 

The superposition of dependencies, Equation8 to 
obtain the hydrostatic stress or Equation 9 to obtain 
the intensity of tensile stresses, agrees for four pairs 
of contacts with the numerical results for the eight- 
contact problem within 30%. 

The intensity of shear stresses in this loading geo- 
metry reveals maxima both under the Hertzian con- 
tacts and between them (see Fig. 9b, d). 

4.3. A twelve-contact model (Fig. 7c) 
The twelve-contact loading corresponds to the h cp 
packing of nanoparticles (the closest packing of rigid 
spheres). This type of packing is frequent in powders 
with a high green density (especially in dense clusters 
of nanoparticles). 

Fig. 10 demonstrates the hydrostatic stress and the 
intensity of shear stresses for peculiar cross-sections 
OAB and OAD (see Fig. 7c). Except for being 
smoother, the maps of stresses principally resemble 
those for the eight-contact model. The fraction of 
dilated volume is negligibly small. 

The numerical data in this case also lie within 30% 
of the values given by the two-contact equations (see 
Equations 8 and 9). 

From Figs 8-10 one can see that the two-contact 
loading produces the most inhomogeneous distribu- 
tion of hydrostatic and shear stresses. There are two 
scales of inhomogeneity in a loaded nanoparticle. The 
fine scale is determined by the contact radius, an, and 
the main scale by the intercontact distance which is of 
the order of I. 

A larger number of contacts favours the hydrosta- 
ticity diminishing the intensity of shear stresses in the 
central regions of nanoparticles. Table I demonstrates 
this increase of hydrostatic stresses in the centre of 
a loaded nanoparticle, Pro, with the increase of the 
coordination number Z. 

It follows from this table, that the hydrostatic stress 
in the centre of a nanoparticle tends to the value of 
external pressure as the coordination number, Z, be- 
comes large, i.e. the stresses in nanoparticles become 
primarily hydrostatic. The deviations from hydro- 
staticity may be most clearly seen in the case of two 
contacts. In fact, a rather extended region with posit- 
ive dilatation is formed in the case of the two-contact 
loading of nanoparticles. The dimensions of this re- 
gion essentially decrease with the coordination num- 
ber Z increasing. 
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Figure 9 Stressed state in a spherical nanoparticle having eight Hertzian contacts. (a) Hydrostatic stress in OAB cross-section. (b) Intensity of 
shear stresses in OAB cross-section. (c) Hydrostatic stress in OAD cross-section. (d) Intensity of shear stresses in OAD cross-section. Data are 
given in terms of E (Young's modulus). 
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Figure 10 Stressed state in a spherical nanoparticle having twelve Hertzian contacts. (a) Hydrostatic stress in OAB cross-section. (b) Intensity 
of shear stresses in OAB cross-section. (c) Hydrostatic stress in OAD cross-section. (d) Intensity of shear stresses in OAD cross-section. Data 
are given in terms of E (Young's modulus). 
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It is peculiar that the volume of the dilated region is 
practically independent of the external load and is 
mainly determined by the coordination number, Z. 
Thus, the segregation processes should first develop in 
nanopowders with low green density ceteris paribus. 

All these results are valid if the interparticle sliding 
processes in the nanopowders under compaction are 
completely finished and a perfect packing of nanopar- 
ticles is achieved (i.e. the contact shear loading is non- 
essential). 

The influence of diffusion processes on the contact 
geometry has been neglected here. In fact, this may be 
done either under the conditions of low homologous 
temperatures or when the local stresses are not high 
enough to form the interstitials [19] (see Section 6). 

If the diffusion neck develops, very high local stres- 
ses must appear near it [34]. These stresses Oloc ~ ?/h 
(where h is the radius of the diffusion neck, see Fig. 6a) 
rarely exceed 1 GPa. However, if one takes into ac- 
count the small value of radius h (h ~ o~2/I ~ 1 nm) for 
typical nanoparticles, then according to the Saint- 
Venant principle [10] these stresses should rapidly fall 
at distances of the order of several h. This conclusion 
coincides with the results reported previously [34]. 

Thus, in real loaded nanoparticles, one can discern 
three types of stress inhomogeneities according to 
their size: 

1. inhomogeneity decreasing at distances propor- 
tional to the diffusion neck radius, h; 

2. inhomogeneity with the scale of the order of the 
Hertzian contact radius, Qtn, see above; 

3. inhomogeneity with the typical size proportional 
to the nanoparticle size, I. 

In accord with the Saint-Venant principle, the small 
deviations from the spherical shape (asperity, facets, 
impurities, etc.) should not drastically influence the 
stress fields in the main part of the nanoparticle 
volume (elastic fields are disturbed only in the vicinity 
of imperfections). Nevertheless, when the scale of 
asperity approaches the contact radius ~n, the stress 
field should be seriously disturbed over the whole 
nanoparticle volume. 

The study of the stressed state of nanoparticles in 
the ensembles exposed to high external pressures pre- 
sents a difficult problem. The field of theoretical con- 
sideration is substantially narrowed, because at such 
pressures the linear theory of elasticity fails in the 
main part of the nanoparticle volume. Even at 
~n = 0.15 l the deformation, ~, right under the Her- 
tzian contact which is about 0.1, is close to the margin 
of validity of the linear theory of elasticity. 

5. Plastic re laxat ion of contac t  
stresses 

The maximum shear stress near the contact area may 
be approximately described by formula z ~ [(1 - 2v)/ 
2 ( 1 -  v)]Crm~ ~ [14]. The intensity of the contact 
stress fields described above is rather large at the 
initial stages of nanopowder compaction (e.g. at 

P ~ 0.1-1 GPa the contact local stress, Olo c, may be as 
large as 10 GPa, which is close to the theoretical 
strength). If external pressure exceeds a certain value, 
P, the near-contact shear stress, ~, makes the lattice 
dislocations formed by interface dislocations (see Fig. 
11) overcome the potential barrier and leave the inter- 
face. The Orowan criterion (Zloc > 2 Gb/D ~, where ~Cloc 
is the local shear stress) [35] should be fulfilled so that 
the dislocation segment of length, D, could spread into 
the nanoparticle volume (Fig. 11). This criterion im- 
plies that the external pressure, P, should obey the 
following condition 

P > P~l)(l) ~ 04G(b/D) 3 (10) 

where 04 ~ 101. The substitution of typical values 
for the parameters entering this expression gives 
p(1) ~ 1 GPa. 

In the case of nanopowder mixtures, the formation 
and development of the dislocation half-loops occurs 
in the field of their image forces ~ 0'(G (2) 
- G(I))b/(G ~2) + G(l))z, where 0' ~ 10-1 and z is the 

maximum distance from the half-loop to the contact 
(Fig. 12). If the shear modulus of the nanoparticle G ~1) 
is less than that of its neighbour, G ~2), these forces 
stimulate the spread of a half-loop into the nanopar- 
ticle volume, otherwise they prevent half-loops from 
spreading. 

When the segments of the spreading loop with the 
screw components of the Burgers vector have low 
mobility as for some b c c metals, or, when the loops 
from neighbouring contacts block their lateral spread, 
the loop of interest may be treated as a narrow dipole 
(Fig. 12a). 

This model allows a simple estimation of the irre- 
versible spread of such a dipole. Really, under the 
action of contact stresses, this dipole may pass 
through the nanoparticle volume or react with other 
segments which results in the formation of the sessile 
dislocation configurations, or it may be captured by 
plane defects (twins, stacking faults, etc.) which are 
responsible for the irreversibility of plastic processes. 
Using Equation 9 and the approach proposed in [19], 
one may obtain the following relation for the charac- 
teristic pressure corresponding to the beginning of the 
plastic deformation of nanoparticles due to the irre- 
versible spread of the dislocation dipoles 

p~2)(1) ,,~ 05G(b/ l ) l /z  (11) 

where 05 ,-~ 1-10. At large l (I>> l*, see [31]) the 
nanoparticles possess their own mobile dislocations 
and this estimate should not be used. It is interesting 
to note that Equation 11 yields the same thresholds 
p(2) (l) for ceramic and metallic nanoparticles, because 
the shear moduli of these materials do not differ 
significantly. This approach may, particularly, explain 
the disappointing results on the compressibility of 
ceramic and metal nanopowders reported previously 
[36, 37]. 

On the other hand, if the Peierls barrier, %, is very 
high (criterion l > l* is almost always fulfilled), the 
generated dipoles may be retained in the nanoparticle 

Other theories [10] predict a slightly smaller value of the factor entering this expression. 
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Figure 11 Spread of a segment of an interface dislocation caused by contact stresses and the formation of partial dislocation with the Burgers 
vector b'. 

I I I 

k ' I 
(o) (b) J I 

Figure 12 Models of the generation of dislocation half-loop from the Hertzian contact. (a) Dislocation dipole spreading downwards in the 
case when dipole lateral segments with screw components of the Burgers vector exhibit low mobility. (b, c) Front and side views of the broad 
half-loop in the case when dipole lateral segments with screw components of the Burgers vector have high mobility. 

volume without any assistance of other defects. Under 
the narrow-dipole approximation this may occur if the 
following inequality is valid: 

cy v > 06Gb/D (12) 

where 0 6 ~ 1 0 -  1 The typical value of parameter  biD 

in this case is about  10 -1 and Equation 12 should 
hold for nanoparticles of germanium, silicon and for 
most ceramic materials (the latter have the critical 
length of dislocation stability l* ~ 1 nm). Thus, the 
plastic deformation in these materials should always 
be irreversible. 

When the screw components of the dislocation have 
high mobility (e.g. for f cc  metals) the half-loop may 
not be approximated by a narrow dipole (Fig. 12b). In 
this case the distance between the points of inter- 
sections of the half-loop with the nanoparticle surface 
is comparable with radius l and depends on the 
external pressure P. Elastic image forces are more 
intense than in the previous model (because the dis- 
location line is effectively closer to the nanoparticle 
surface), so they can overcome the dislocation linear 
tension and become the main factor in the irreversible 
spread of dislocations. One may obtain the character- 
istic pressure corresponding to the initiation of the 
irreversible plastic deformation of a nanoparticle [19] 

P'(zI(I) ~ 07Gb/l  (13) 

where 07 ~ 10 1 10-z. One should note that for f cc  
metals the height of the Peierls barrier, cyp, cannot 

influence the estimate because this stress in such a case 
is rather low [10]. 

On the one hand, the spread of partial dislocations 
is facilitated by the small value of the Burgers vector; 
on the other hand, it is hindered due to the connection 
of the stacking fault with the partials. Such stacking 
faults of the "deformation" origin may be left in the 
nanoparticle volume after unloading a nanopowder  
specimen. Perhaps, it is these defects that have been 
observed in as-compacted nanopowders [38]. 

It follows from the considerations presented above, 
that the nanopowders consisting of the particles 
whose dimensions l are less than the critical length of 
the dislocation stability l* [31] may reveal under 
compaction the threshold dependence of densification 
on the applied pressure, P. (Probably, such a threshold 
has been observed by Trusov et al. [39].) The thresh- 
old value may be estimated as OG(b/l)  m, where 0 and m 
are specific to the material. The threshold value for the 
ensemble of nanoparticles with sizes ! < 102 nm may 
considerably exceed the typical pressure needed to 
compact coarse powders, which is several hundred 
megapascals. 

One should bear in mind that the obtained thresh- 
old values of pressure should be considered only as the 
order-of-magnitude estimates, because most expres- 
sions contain poorly defined factors, 0. In addition, the 
densification-pressure diagrams may be smeared by 
an unavoidable dispersion in nanoparticle sizes, the 
irregular stacking of nanopowder particles and the 
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non-identity of contacts. The temperature increase 
should have the same effect, and it should diminish the 
values of p(1), p(2) and p,(2). 

The diffusion necks may influence plastic processes 
in coarse powders [34, 40] bringing about the appear- 
ance of the sintering rosettes resulting from the re- 
distribution of dislocations near the neck. The genera- 
tion of dislocations by diffusion necks (self-indenta- 
tion [40]) is, of course, hardly probable, because the 
diffusion neck stresses, which decay rapidly in nano- 
particle volume (the characteristic decay range is 
about a few nanometres, see Section 4), do not provide 
any mechanism-stabilizing glissile dislocations. How- 
ever, the stresses provided by the surface tension and 
existing near the diffusion neck may appreciably effect 
the mass-transfer processes at the periphery of contact 
interfaces (see the next section). 

6. D i f f u s i o n  n e a r  c o n t a c t  i n t e r f a c e s  
Nanopowders are in many aspects unique objects, 
particularly in the sense that in the pre-threshold 
region of pressures (see Section 4) one may excite very 
high local stresses over the whole nanopowder vol- 
ume, which persist for considerable time periods. The 
plastic relaxation of stresses makes such a situation 
practically unreproducible in other objects. 

This section is devoted to the analysis of specific 
features of diffusion in nanopowders when the ex- 
ternal pressure, P, does not exceed the threshold value 
corresponding to the origination of irreversible plastic 
processes in nanoparticles. The present consideration 
touches only upon the temperature region T ~ 0.1-0.3 
Tm (where Tm is the melting temperature), where 
exaggerated recrystallization and the processes of nor- 
mal diffusion are weakly pronounced. 

At the initial stage of deformation when the nano- 
particle shape is close to spherical, the gradients of 
stresses in the contact region Vp ~ Plan (where 
p ~ P(1/~n) 2 is the local hydrostatic stress) differ 
noticeably from those in the nanoparticle volume 
Vp ~ P/1. The former are easily seen to be greater by 
an order of magnitude. In addition, the enthalpy of the 
defect formation changes by pA Vv (where A Vv is the 
activation volume of defect formation). Owing to this 
fact, the probability of the formation of a vacancy in 
the contact region decreases, while the probability of 
forming an interstitial grows. Each diffusion mech- 

anism acts during its typical time period, z. These 
typical periods may be estimated if one takes the 
gradients of contact stresses to be effective up to 
distances r ~ a n from the contact (Fig. 13). 

Under the action of the contact stress gradients, VP, 
the impurity atoms may leave the contact interface 
and diffuse towards the nanoparticle-free surface. One 
may obtain the corresponding estimate 1-19] 

~[~ "-, GA~/(c)n(c ) (14) 
r F  ~ im 

where superscript c indicates values relevant to the 
contact interface, and Dim is the diffusion coefficient of 
the second component. 

If, initially, the second component is uniformly 
dissolved in the nanoparticle volume, then under 
the action of the volume gradients, Vp, resulting in the 
stress-stimulated diffusion, the homogeneity of the 
composition is broken in the time given by expression 

"~[~ c:.A v(v)n(v) (15) 
"J~  --F a.. im 

where superscript v denotes the diffusion processes in 
the volume. From this relationship it follows that the 
higher the external pressure and the smaller the par- 
ticle size, the greater this inhomogeneity in the dis- 
tribution of the second component. The allowance for 
the dependence of D ~  on the local stresses will pro- 
duce a more involved dependence of r! v) on P. 

- -  I m 

One may realize that the concentration of the sec- 
ond component with AV E < 0 (i.e. vacancies, substitu- 
tional atoms with a diameter less than the dimensions 
of the lattice atoms) may locally increase in the vicinity 
of the contact area, while the second component with 
AVE > 0 (i.e. the interstitials and the substitutional 
atoms with large radii) should evidently diffuse 
towards the nanoparticle-free surface. 

The Hertzian stresses may stimulate the self-diffu- 
sion processes in one-component nanoparticles sim- 
ilarly to the stress-stimulated diffusion of adsorbed 
and dissolved atoms in two-component nanoparticles. 
In the present case an appreciable mass transfer brings 
about an irreversible nanoparticle deformation and, 
hence, the relaxation of contact stresses. Possible 
mechanisms of self-diffusion are considered below. 

For the contact-interface stress-stimulated self-dif- 
fusion the material is transferred from the centre of the 

~'H I '~- ~ H  ~- * 
I t 

(al (hi (c) 

Figure 13 Diffusion mechanisms providing stress relaxation in interface contacts. (a) Interface (boundary) diffusion. (b) Surface diffusion. 
(c) Volume diffusion via an interstitial mechanism (wavy lines represent crowdions). 
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contact towards its periphery in a thin layer of width, 
a (Fig. 13a). Assuming the contact stresses to fall at a 
distance of the order of the contact radius, one can 
obtain [19] 

GAV(vC) D(C)a ( P )  1/3 
~ kT 13 (16) 

The deformation rate for the process of the surface 
stress-stimulated self-diffusion may be estimated using 
the assumption, that under the action of the "surface" 
hydrostatic local stress, p', the atoms drift over the 
surface layer of width, a', into the neck region (see Fig. 
13b). The corresponding expression has the following 
form [19]: 

1.5 

0 

G- o 

0 

\ \  

-02 
0.1 z/ l  1.0 

Figure 14 Relative variation of second-component concentration 
(qo - Co)/% in nanoparticles with depth at three time moments. 
The dependence presented refers to the case of the second-compon- 
ent atoms (or defects) with a negative activation volume, A VF. 

GAV~) D(S)a' ( P )  1/3 
~ kT 13 (17) 

where superscript s denotes the phenomena at the 
nanoparticle surface. 

Under certain conditions, the stress-stimulated self- 
diffusion proceeding via the interstitial mechanism 
(Fig. 13c) may turn out to be the main channel of the 
relaxation of elastic stresses. It is highly probable that 
the crowdions and interstitials are formed in the con- 
tact region where the stress concentration is maximum 
(e.g. near the vertices of the nanoparticle habitus 
which are set against the facet of the neighbouring 
nanoparticle, or near the facet steps, see Section 3). 

The enthalpy of the formation of interstitials and 
crowdions under the action of the contact pressure, 
p, considerably decreases by the value of - p A V *  
+ ASkT [41], where AV~ is the activation volume of 

forming an interstitial, AS is the relative change in the 
entropy associated with forming an interstitial or a 
vacancy. In contrast to interstitials, the formation of 
vacancies is suppressed, the concentration of thermo- 
dynamically equilibrium vacancies being decreased by 
a factor of exp( - plAVFI). In this case, the preferable 
interstitial formation will determine the self-diffusion 
processes via the interstitial mechanism. The proper 
deformation rate has the following form [19]: 

kv kT l 2 -- (18) 

where D I v) is the coefficient of the volume self-diffusion 
via the interstitial mechanism. 

The heterogenization in nanoparticles with the ini- 
tially uniform distribution of the second component, 
accounted for by the diffusion caused by the Hertzian 
stresses, has been considered by Tanakov et al. [42]. It 
has been shown that in the first moments the concen- 
tration of the second component along the loading 
axis (see Fig. 14) changes non-monotonically. After a 
certain delay the second component acquires a mono- 
tonic spatial distribution in the vicinity of the Hertzian 
contact. 

The surface tension playing an important role in the 
classical theory of sintering has been ignored in Equa- 
tions 16-18. The characteristic pressure above which 
the Hertzian stresses prevail over the surface tension 
in the mass-transfer processes in nanoparticles may be 

estimated as 

e' = ~  7 

where the numerical factor 0 8 ~ 1. The substitution of 
the proper parameters gives the value P' ~ 0.1-1 GPa. 
Thus, for higher external pressures, surface tension 
effects may be neglected. 

As shown in Section 5, the nanoparticle plastic 
deformation due to the exit of interface dislocations 
into the nanoparticle volume may take part in relaxa- 
tion phenomena and compete with diffusion. The rate 
of plastic deformation corresponding to this process 
may be approximately written as [19] 

bv (P~  2/3 
~;a ~ / ~ \ ~ /  (20) 

where v is the velocity of dislocation translation. 
The dislocation channel of the contact stress relaxa- 

tion is efficient, as long as the external pressure ex- 
ceeds the threshold value, p(2) (l), corresponding to the 
irreversible development of plastic deformation (see 
Section 5). In this case the rate of plastic deformation 
exceeds the rate of deformation provided by diffusion 
mechanisms (see Equations 16-18). Therefore, the 
condition which determines the possibility of the 
dislocation channel dominating over the diffusion one, 
may be written as the condition imposed on the 
velocity of the translation of dislocation in loaded 
nanoparticles 

v~> 

GAV(v~ D(C)a~ ( G )  l 2 b 

GAV~'  O'S'a , ~(G~ 1/3 
kT l 2 b \ P J  

G A V * D I V ) ~ ( G )  1 b 

p > p(2) (21) 

Hence, the high rates of loading and appreciable 
external pressures are required to ensure the effective 
relaxation of contact stresses in nanoparticle ensem- 
bles at the expense of plasticity. 

The considered processes of the stress-stimulated 
diffusion of dissolved and adsorbed atoms in multi- 
component nanoparticles may modify their physical 
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T A B L E  II Exponents characterizing mass-transfer kinetics in 
contacts 

Diffusion mechanism Surface tens ion Hertzian stresses 
n m n m 

Intercrystallite 6 4 ' 6 3 
Surface 3-7 2 -4  5 3 
Volume 
(Interstitial) 4 5 3 5 2 

and mechanical properties. The inhomogeneous dis- 
tribution of the second-component atoms over the 
nanoparticle volume may locally change the elastic 
moduli and the Peierls barrier height. In addition, a 
new phase may be formed in the regions of the max- 
imum concentration of the second component. This 
phase may considerably retard the development of 
plastic deformation in nanoparticles and worsen the 
compaction conditions. 

The lattice deformation of contacting nanoparticles 
may also lead to the dissolution of impurities, adsorb- 
ed by the surface of a nanoparticle, in the crystal 
lattice. The time required for this process may be 
estimated using Equation 15. On the one hand the 
dissolution of the impurity atoms hardens the nano- 
particle material; on the other hand, it may clear up 
the nanoparticle surface from the impurities. 

Substituting the typical values of parameters 
T = 2 9 3 K ,  P ~ 1 0  -1GPa,  ~ n / I ~ 1 0  -1 , D}~ 
10-15 m2s -1, D I ~  1 0 - 1 7  m Z s  - 1 ,  A V F ~  10 - 2 -  

10- 'a  3 into Equations 14 and 15, one may show that 
the heterogenization in the contact interface and in the 
nanoparticle volume can occur in times ~ 10- 2-102 s. 

For one-component nanoparticles, the estimates 
(Equations 16-18) for the rate of contact stress relaxa- 
tion may be rewritten in the form of the well-known 
formula of the contact radius kinetics (s / l )"  = C1 -rot 

[43], where n, m, C are the constants characterizing 
the particular mechanism of mass-transfer, and t the 
duration of isothermal sintering. The computed values 
of exponents n and m for the surface tension [43] and 
for the Hertzian contact stresses are given in Table II. 
It is clearly seen from this table, that the external 
hydrostatic pressure applied to nanopowders changes 
the kinetics of the low-temperature sintering. One 
should note that for the nanoparticles with the size l 
exceeding the characteristic length l* [31] of the dis- 
location stability, the results for Hertzian contacts lose 
their validity. 
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